On Kloosterman sums over finite fields of characteristic 3

نویسندگان

  • Leonid A. Bassalygo
  • Victor Zinoviev
چکیده

We study the divisibility by 3 of Kloosterman sums K(a) over finite fields of characteristic 3. We give a simple recurrent algorithm for finding the largest k, such that 3 divides the Kloosterman sum K(a). This gives a simple description of zeros of such Kloosterman sums.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On divisibility of exponential sums of polynomials of special type over fields of characteristic 2

We study divisibility by eight of exponential sums of several classes of functions over finite fields of characteristic two. For the binary classical Kloosterman sums K(a) over such fields we give a simple recurrent algorithm for finding the largest k, such that 2 divides the Kloosterman sum K(a). This gives a simple description of zeros of such Kloosterman sums.

متن کامل

New Kloosterman sum identities and equalities over finite fields

We present some general equalities between Kloosterman sums over finite fields of arbitrary characteristics. In particular, we obtain an explicit Kloosterman sum identity over finite fields of characteristic 3. © 2008 Elsevier Inc. All rights reserved.

متن کامل

Extension Theorems for the Fourier Transform Associated with Non-degenerate Quadratic Surfaces in Vector Spaces over Finite Fields

We study the restriction of the Fourier transform to quadratic surfaces in vector spaces over finite fields. In two dimensions, we obtain the sharp result by considering the sums of arbitrary two elements in the subset of quadratic surfaces on two dimensional vector spaces over finite fields. For higher dimensions, we estimate the decay of the Fourier transform of the characteristic functions o...

متن کامل

ar X iv : m at h / 06 09 42 6 v 3 [ m at h . C O ] 1 5 O ct 2 00 6 SUM - PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN

We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.

متن کامل

Sum-product Estimates in Finite Fields via Kloosterman Sums

We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2017